Univ.-Prof. Mag. Dr. Johannes Kirchmair
Johannes Kirchmair
81 - 100 out of 142
Chen Y, Lomana MGD, Friedrich NO, Kirchmair J. Characterization of the Chemical Space of Known and Readily Obtainable Natural Products. Journal of Chemical Information and Modeling. 2018 Aug;58(8):1518-1532. doi: 10.1021/acs.jcim.8b00302

Stork C, Kirchmair J. PAIN(S) relievers for medicinal chemists: how computational methods can assist in hit evaluation. Future Medicinal Chemistry. 2018 Jul 29;10(13):1533-1535. doi: 10.4155/fmc-2018-0116

Friedrich NO, Simsir M, Kirchmair J. How Diverse Are the Protein-Bound Conformations of Small-Molecule Drugs and Cofactors? Frontiers in Chemistry. 2018 Mar 27;6:68. doi: 10.3389/fchem.2018.00068

Stork C, Wagner J, Friedrich NO, de Bruyn Kops C, Sicho M, Kirchmair J. Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters. ChemMedChem. 2018 Mar 20;13(6):564-571. doi: 10.1002/cmdc.201700673

Friedrich NO, Kops CDB, Flachsenberg F, Sommer K, Rarey M, Kirchmair J. Benchmarking Commercial Conformer Ensemble Generators. Journal of Chemical Information and Modeling. 2017 Nov;57(11):2719–2728. doi: 10.1021/acs.jcim.7b00505

Chen Y, Kops CDB, Kirchmair J. Data Resources for the Computer-Guided Discovery of Bioactive Natural Products. Journal of Chemical Information and Modeling. 2017 Sept;57(9):2099–2111. doi: 10.1021/acs.jcim.7b00341

Sicho M, Kops CDB, Stork C, Svozil D, Kirchmair J. FAME 2: Simple and Effective Machine Learning Model of Cytochrome P450 Regioselectivity. Journal of Chemical Information and Modeling. 2017 Aug;57(8):1832–1846. doi: 10.1021/acs.jcim.7b00250

Kops CDB, Friedrich NO, Kirchmair J. Alignment-Based Prediction of Sites of Metabolism. Journal of Chemical Information and Modeling. 2017 Jun;57(6):1258-1264. doi: 10.1021/acs.jcim.7b0015

Friedrich NO, Meyder A, Kops CDB, Sommer K, Flachsenberg F, Rarey M et al. High-Quality Dataset of Protein-Bound Ligand Conformations and Its Application to Benchmarking Conformer Ensemble Generators. Journal of Chemical Information and Modeling. 2017 Mar;57(3):529–539. doi: 10.1021/acs.jcim.6b00613

Hoffmann A, Schade D, Kirchmair J, Clement B, Sauerbrei A, Schmidtke M. Platform for determining the inhibition profile of neuraminidase inhibitors in an influenza virus N1 background. Journal of Virological Methods. 2016 Nov;237:192-199. doi: 10.1016/j.jviromet.2016.09.014

Grienke U, Richter M, Walther E, Hoffmann A, Kirchmair J, Makarov V et al. Killing two birds with one stone - Prenylated flavonoids disrupt the lethal synergism of influenza A viruses and pneumococci. Planta Medica. 2016;81(S01):S1-S381. doi: 10.1055/s-0036-1596116

Makarov VA, Braun H, Richter M, Riabova OB, Kirchmair J, Kazakova ES et al. Pyrazolopyrimidines: Potent Inhibitors Targeting the Capsid of Rhino- and Enteroviruses. ChemMedChem. 2015 Oct;10(10):1629-1634. doi: 10.1002/cmdc.201500304

Kirchmair J, Goeller AH, Lang D, Kunze J, Testa B, Wilson ID et al. Predicting drug metabolism: experiment and/or computation? Nature Reviews. Drug Discovery. 2015 Jun;14(6):387–404. doi: 10.1038/nrd4581

Thelemann J, Illarionov B, Barylyuk K, Geist J, Kirchmair J, Schneider P et al. Aryl Bis-Sulfonamide Inhibitors of IspF from Arabidopsis thaliana and Plasmodium falciparum. ChemMedChem. 2015;10(12):2090-2098. doi: 10.1002/cmdc.201500382

Braun H, Kirchmair J, Williamson MJ, Makarov VA, Riabova OB, Glen RC et al. Molecular mechanism of a specific capsid binder resistance caused by mutations outside the binding pocket. Antiviral Research. 2015;123:138-145. doi: 10.1016/j.antiviral.2015.09.009

Tyzack JD, Mussa HY, Williamson MJ, Kirchmair J, Glen RC. Cytochrome P450 site of metabolism prediction from 2D topological fingerprints using GPU accelerated probabilistic classifiers. Journal of Cheminformatics. 2014 May 27;6(1):29. doi: 10.1186/1758-2946-6-29

Rechfeld F, Gruber P, Kirchmair J, Boehler M, Hauser N, Hechenberger G et al. Thienoquinolines as novel disruptors of the PKCε/RACK2 protein-protein interaction. Journal of Medicinal Chemistry. 2014 Apr 24;57(8):3235-3246. doi: 10.1021/jm401605c

Mak L, Liggi S, Tan L, Kusonmano K, Rollinger JM, Koutsoukas A et al. Anti-cancer drug development: Computational strategies to identify and target proteins involved in cancer metabolism. Current Pharmaceutical Design. 2013;19(4):532-577. doi: 10.2174/138161213804581855

Kirchmair J, Williamson MJ, Afzal AM, Tyzack JD, Choy APK, Howlett A et al. FAst MEtabolizer (FAME): A Rapid and Accurate Predictor of Sites of Metabolism in Multiple Species by Endogenous Enzymes. Journal of Chemical Information and Modeling. 2013;53(11):2896–2907. doi: 10.1021/ci400503s

Kirchmair J, Howlett A, Peironcely JE, Murrell DS, Williamson MJ, Adams SE et al. How Do Metabolites Differ from Their Parent Molecules and How Are They Excreted? Journal of Chemical Information and Modeling. 2013;53(2):354–367. doi: 10.1021/ci300487z

81 - 100 out of 142

Computational approaches for predicting assay interference

Kirchmair, J. (Speaker)

23 May 2024

Activity: Talks and presentationsTalk or oral contributionScience to Science


Computational methods for early drug discovery

Kirchmair, J. (Speaker)

5 Apr 2024

Activity: Talks and presentationsTalk or oral contributionScience to Science


Activity Cliffs Go Smooth: Graph Siamese Neural Networks for Molecular Activity Prediction

Mqawass, G. (Speaker), Hirte, S. (Speaker), Kirchmair, J. (Speaker) & Kriege, N. M. (Speaker)

8 Dec 2023

Activity: Talks and presentationsTalk or oral contributionScience to Science


Maximizing the performance of similarity-based virtual screening methods

Kirchmair, J. (Speaker)

19 Apr 2023

Activity: Talks and presentationsTalk or oral contributionScience to Science


In silico methods for flagging compounds that are likely to interfere with biological assays

Kirchmair, J. (Invited speaker)

16 Dec 2022

Activity: Talks and presentationsTalk or oral contributionScience to Science


Cheminformatics in natural product-based drug discovery

Kirchmair, J. (Invited speaker)

24 Nov 2022

Activity: Talks and presentationsTalk or oral contributionScience to Science


From in silico to in vivo - Psychotria nemorosa alkaloids counter protein toxicity in Caenorhabditis elegans

Kirchweger, B. (Speaker), Klein-Junior, L. C. (Contributor), Pretsch, D. (Contributor), Chen, Y. (Contributor), Cretton, S. (Contributor), de Gasper, A. L. (Contributor), Heyden, Y. V. (Contributor), Christen, P. (Contributor), Kirchmair, J. (Contributor), Henriques, A. T. (Contributor) & Rollinger, J. M. (Contributor)

31 Aug 2022

Activity: Talks and presentationsTalk or oral contributionScience to Science


Natural products against SARS-CoV-2 or how to catch a butterfly?

Wasilewicz, A. (Speaker), Kirchweger, B. (Contributor), Bojkova, D. (Contributor), Abi Saad, M. J. (Contributor), Langeder, J. (Contributor), Grienke, U. (Contributor), Cinatl, J. (Contributor), Orts, J. (Contributor), Kirchmair, J. (Contributor), Rabenau, H. F. (Contributor) & Rollinger, J. M. (Contributor)

31 Aug 2022

Activity: Talks and presentationsTalk or oral contributionScience to Science


Cheminformatics in Natural Product-Based Drug Discovery

Kirchmair, J. (Keynote speaker)

30 Aug 2022

Activity: Talks and presentationsTalk or oral contributionScience to Science


Computerbasierte Vorhersage des Metabolismus von Wirkstoffen

Kirchmair, J. (Invited speaker)

12 Jul 2022

Activity: Talks and presentationsTalk or oral contributionScience to Science


Cheminformatics in natural product-based drug discovery

Kirchmair, J. (Invited speaker)

30 Jun 2022

Activity: Talks and presentationsTalk or oral contributionScience to Science


Introduction to machine learning in early drug discovery

Kirchmair, J. (Invited speaker)

21 Jun 2022

Activity: Talks and presentationsTalk or oral contributionScience to Science


In silico and in vitro Approach to Assess Direct Allosteric AMPK Activators from Nature

Kirchweger, B. (Speaker), Wasilewicz, A. (Contributor), Fischhuber, K. (Contributor), Tahir, A. (Contributor), Chen, Y. (Contributor), Heiß, E. (Contributor), Langer, T. (Contributor), Kirchmair, J. (Contributor) & Rollinger, J. M. (Contributor)

20 May 2022

Activity: Talks and presentationsTalk or oral contributionScience to Science


In silico prediction of xenobiotic metabolism

Kirchmair, J. (Invited speaker)

19 May 2022

Activity: Talks and presentationsTalk or oral contributionScience to Science


In silico prediction of drug metabolism

Kirchmair, J. (Invited speaker)

4 May 2022

Activity: Talks and presentationsTalk or oral contributionScience to Science


Computational prediction of the metabolic fate of small molecules

Kirchmair, J. (Speaker)

28 Sept 2021

Activity: Talks and presentationsTalk or oral contributionScience to Science


Computational methods for flagging compounds likely to cause false outcomes in biological assays

Kirchmair, J. (Speaker)

7 Jun 2021

Activity: Talks and presentationsTalk or oral contributionScience to Science


In silico prediction of the macromolecular targets of natural products

Kirchmair, J. (Speaker)

9 Mar 2021

Activity: Talks and presentationsTalk or oral contributionScience to Science


Computational prediction of xenobiotic metabolism (focus on AI/machine learning methods)

Kirchmair, J. (Speaker)

27 Jan 2021

Activity: Talks and presentationsTalk or oral contributionScience to Science


Anti-Infectives Drug Discovery

Rollinger, J. M. (Project Lead), Dailey, L. A. (Co-Lead), Orts, J. (Co-Lead), Böttcher, T. (Co-Lead), Schmidt, M. (Co-Lead), Rademacher, C. J. H. (Co-Lead), Schützenmeister, N. (Co-Lead), Zotchev, S. (Co-Lead), Kirchmair, J. (Co-Lead) & Ortmayr, K. (Co-Lead)

1/07/2530/06/29

Project: Research funding


AIDD: Advanced Machine Learning for Innovative Drug Discovery

Kirchmair, J. (Project Lead)

1/01/2131/12/24

Project: Research funding


Department of Pharmaceutical Sciences

Josef-Holaubek-Platz 2 (UZA II)
1090 Wien
Room: 2G353

T: +43-1-4277-55104

johannes.kirchmair@univie.ac.at